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Abstract

This paper is the first part of a two-part series in which we present results
from an experimental demonstration of frequency regulation in a commercial
building test facility.

In Part I, we introduce the test facility and develop relevant building mod-
els. Furthermore, we design a hierarchical controller that consists of three
levels: a reserve scheduler, a building climate controller, and a fan speed
controller for frequency regulation. We formulate the reserve scheduler as
a robust optimization problem and introduce several approximations to re-
duce its complexity. The building climate controller is comprised of a robust
model predictive controller and a Kalman filter. The frequency regulation
controller consists of a feedback and a feedforward loop, provides fast re-
sponses, and is stable.

Part I presents building model identification and controller tuning results,
whereas Part II reports results from the operation of the hierarchical con-
troller under frequency regulation.
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Acronyms

AHU Air Handling Unit

AS Ancillary Service

BAS Building Automation System

CWS Central Working Station

FLEXLAB Facility for Low Energy eXperiments

HVAC Heating, Ventilation and Air-Conditioning

MPC Model Predictive Control

PI Proportional-Integral

PID Proportional-Integral-Derivative

PJM Pennsylvania, Jersey, and Maryland Power Market

RES Renewable Energy Source

RMSE Root Mean Squared Error

SAT Supply Air Temperature

TSO Transmission System Operator

VAV Variable Air Volume

VFD Variable Frequency Drive

1 Introduction

1.1 Motivation and Related Work

Power system frequency reflects the balance between generation and demand of
electric power. If generation exactly meets demand, the frequency is at its nom-
inal value (50 Hz in Europe and 60 Hz in North America). On the other hand,
if generation becomes lower than demand, the frequency drops and vice versa.
Transmission System Operators (TSOs) rely on frequency control reserves in the
form of Ancillary Services (AS) to stabilize frequency after a sudden disturbance
and recover it to its nominal value.

The integration of fluctuating Renewable Energy Sources (RES) in the grid
increases the need for frequency control reserves [1]. Although these reserves
are traditionally provided by power plants, additional reserve resources will be
needed with large RES shares. Conceptually, loads can provide frequency control
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by reducing their consumption when frequency is low and increasing consumption
when frequency is high [2].

Heating, Ventilation and Air-Conditioning (HVAC) systems in commercial build-
ings are well suited for frequency control for three main reasons: (i) commercial
HVAC systems make up a large percentage of the total electricity demand of a
country (around 20% in the US [3,4]), (ii) commercial buildings often have a large
thermal inertia, and (iii) many buildings (one-third of all buildings in the US [3])
have a Building Automation System (BAS) that facilitates control implementation.
However, HVAC systems are typically complex with many control variables and
cascaded control loops. Most of the early work on commercial buildings focused
on the development of building thermal models [5, 6], and on using the building’s
thermal mass for load shifting and peak shedding to minimize electricity cost and
demand charges [7–9].

Some works investigated the potential of commercial buildings for AS pro-
vision. A retail store and an office building participated in a pilot program for
non-spinning reserves in the California Independent System Operator’s AS market
using global temperature adjustments in [10]. In [11] spinning reserve with a dura-
tion of 15 minutes was successfully offered by curtailing the air conditioning load
of a hotel. Ref. [12] used a detailed model of a Variable Air Volume (VAV) HVAC
system to simulate the provision of spinning reserve with setpoint adjustments in
zone temperature, duct static pressure, Supply Air Temperature (SAT), and chilled
water temperature.

This paper concerns frequency regulation from commercial buildings, which
is also known as secondary (or load) frequency control, automatic generation con-
trol, and frequency restoration reserve. Frequency regulation is activated via a
signal sent from the TSO typically every 2 − 4 seconds with the goal of correct-
ing frequency and tie-line power deviations [13]. There is a limited amount of
theoretical, simulation-based or experimental work on frequency regulation with
commercial buildings. In [14] a heat pump was controlled to track a frequency
regulation signal by changing the refrigerant’s flow rate. Adjustments of the duct
static pressure setpoint were used in a simulation study in [15] for frequency reg-
ulation. Refs. [3] and [16] investigated frequency regulation via fan power con-
trol and simulations showed that 15% of the fan power can be offered as reserve,
when the frequency band of the regulation signal is f ∈ [1/(10 min), 1/(4 sec)].
The follow-up work [17] included chiller control enlarging the frequency band to
1/(60 min).

Since buildings are energy-constrained resources it is important to determine
the reserve capacity reliably. Model Predictive Control (MPC) was used in [18]
to quantify the flexibility of a commercial building and offer it to a utility. Ref.
[19] presented a hierarchical control framework consisting of a reserve capacity
scheduler, an MPC for HVAC system control, and a feedback controller to track
the regulation signal. The framework of [19] was extended in [20] to include
energy-constrained regulation signals, and in [21] with a chance-constrained re-
serve scheduling formulation. Ref. [22] proposed a simulation-based approach to
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estimate the reserve capacity neglecting the time-coupling across different schedul-
ing intervals. The energy capacity of a commercial building was estimated in [23]
with a virtual battery model.

Estimating the building’s baseline consumption without frequency regulation
is challenging. Baseline estimation was performed on-line in [24] using a low-pass
filter. If MPC is used as in [18–21] the baseline power is known ahead of time,
which is advantageous because it facilitates the financial settlement.

Apart from simulation-based studies, experimental verification of frequency
regulation by commercial buildings is necessary to build confidence for wide-
spread implementation. Unfortunately, there have been only a few demonstrations
and field tests so far. The feasibility of offering up- and down-regulation products
with global temperature adjustments and ventilation power control was investi-
gated in [25]. Ref. [26] demonstrated that fans can provide frequency regulation
with open-loop control of the frequency of the Variable Frequency Drive (VFD)
using industry-standard demand response communications. In [24] an auditorium
of a university building provided frequency regulation controlling the fan speed
and air flow rate setpoints. The fan power was indirectly controlled via static duct
pressure setpoint adjustments in [18].

Frequency regulation experiments with a variable speed heat pump were re-
ported in [27] in a lab-scale microgrid, using direct compressor control and adjust-
ments of the supply water temperature setpoint. Ref. [28] developed a Proportional-
Integral-Derivative (PID) controller for frequency regulation with a chiller, and
combined it with a high-pass filter of the regulation signal and a baseline estima-
tor. The follow-up work [29] identified the BAS delays and chiller ramp-rates and
minimum cooling power limits as important issues for practical implementation.
Finally, [30] investigated experimentally the efficiency of fast demand response
actions in commercial buildings.

1.2 Contribution and Organization of this Paper

To the best of our knowledge, this two-part paper presents the first experimental
demonstration of frequency regulation from a commercial building that simulta-
neously addresses the following challenges: (i) a priori determination of reserve
capacity and bidding in a day-ahead AS market; (ii) a priori declaration of the
short-term operating power around which we provide frequency regulation; (iii)
balancing energy consumption and reserve capacity, such that the net profit is max-
imized and the effect on occupant comfort is minimal; and (iv) accurate tracking
of the regulation signal with fan speed control.

To this end, we adopt the hierarchical control framework of [19–21] and ex-
tend it in several ways. We determine the reserve capacity in a day-ahead fashion
using robust optimization, and control the HVAC system with a robust MPC. In
contrast to [19–21], we investigate the use of different building models in the re-
serve scheduler and MPC controller, and develop a Kalman filter to provide state
estimates to the controller. Whereas [19–21] considered water-based HVAC sys-
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Figure 1: The Facility for Low Energy eXperiments (FLEXLAB) at LBNL.

tems, we focus on VAV HVAC systems with fans and propose computationally
tractable reformulations to account for the fan nonlinear dynamics. Furthermore,
in contrast to [26] that used open-loop control and to [24] that developed a standard
Proportional-Integral (PI) controller for the fan, we propose a switched controller
with a feedforward and a feedback loop in order to track the regulation signal.
The proposed controller demonstrates a high performance without compromising
stability.

In Part I of this two-part paper, we introduce the test facility in Section 2,
identify simple building models in Section 3, and present the hierarchical control
design in Sections 4 - 6. Extensive experimental results are reported in Part II [31].

2 Test Facility

2.1 FLEXLAB: our Test Facility

The experiment was performed at the Facility for Low Energy eXperiments (FLEX-
LAB), a new facility for energy efficiency research in buildings located at the
Lawrence Berkeley National Laboratory (LBNL). The facility (shown in Fig. 1) is
comprised of 4 buildings (called “bays”) and each of them has 2 thermally isolated
test “cells”. Each pair of cells is designed to be thermally identical, constructed
with the same materials and dimensions.

The thermal isolation resulting from the near adiabatic walls between the two
cells allows them to be modeled independently. This is a unique feature of FLEX-
LAB that allows us to perform frequency regulation experiments in one of the two
identical cells (cell “1A”), while using the other one (cell “1B”) as a benchmark to
evaluate the effect of our control actions in real time and under the same external
conditions. The bay used in our experiment has a south orientation and a total floor
area of 120 m2 (60 m2 per building cell).

Three major cascade control loops are present in a VAV HVAC system: chilled
water temperature control, SAT control, and zone (room) temperature control. A
chiller plant cools down water that is then piped to the building’s Air Handling
Unit (AHU). The chilled water decreases the temperature of a mixture of return
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Figure 2: The HVAC system of building cells 1A and 1B of FLEXLAB.

and outside air in the AHU using a heat exchanger, and the flow of the chilled
water is controlled to maintain a constant SAT. The cooled air is circulated to the
building zones through the duct system using a fan. The temperature of each zone
is maintained close to the desired setpoint by controlling the damper position of
the VAV box.

Typically, an AHU provides several building zones with cooled air, whereas
reheating is performed at the VAV boxes. As shown in Fig. 2, FLEXLAB differs
from this typical mode of operation in two ways: (i) the cells are served by ded-
icated AHUs that contain a heating coil; and (ii) the air volume is controlled by
fan speed alone rather than damper position. Although small, the test facility is a
good representation of commercial buildings with VAV systems constructed in the
1980’s and is highly controllable.

2.2 Control Approach

FLEXLAB is controlled by a Central Working Station (CWS) based on an existing
control sequence programmed in LabVIEW. From a TestStand National Instru-
ments user interface, the operator can monitor the system and modify the setpoints
of various control loops. We develop the hierarchical controller for frequency reg-
ulation externally in order to minimize potential conflicts with the LabVIEW code,
and send the control commands to the CWS via a scripting environment.

Specifically, we disable the zone temperature PI control of FLEXLAB and re-
place it with an MPC-based controller, which determines the air flow rate setpoints.
However, the hierarchical controller does not substitute the chilled water tempera-
ture and SAT control loops of the HVAC system, which remain active. The hier-
archical controller consists of the following three levels, and the control sequences
are shown in Fig. 3.

2.2.1 Level 1: Reserve Scheduler

The goal of the reserve scheduler is to determine the reserve capacity that the build-
ing can reliably offer to the TSO by solving a multi-period robust optimization
problem. We assume a day-ahead reserve scheduling occurring at 12.00 of each
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Control sequences

Day d-1 Day d

Level 1: 
reserve scheduler

12:0000:00 24:00
Level 2: 

Supply air flow setpoint

Level 3: 
Fan speed setpoint

15 
min

30 
min

45 
min

4s 8s …

…

Figure 3: Control sequences of the three levels of the hierarchical controller.

day to determine the reserve capacity for the next day, which is common in several
AS markets [32].

2.2.2 Level 2: Room Climate Controller

This zonal controller calculates the supply air flow rate setpoints that minimize
energy consumption while ensuring occupant comfort under reserve provision. It
is implemented as a robust MPC that runs every 15 minutes along with a Kalman
filter.

2.2.3 Level 3: Frequency Regulation Controller

The goal of this controller is to track the frequency regulation signal every 4 sec-
onds by modifying the fan power via fan speed control with a VFD. For this pur-
pose, we designed a switched controller comprised of a feedforward model-based
controller and a feedback PI controller.

3 Modeling and Identification

3.1 Building Thermal Model

We model the building with the 2-state resistance-capacitance network of Fig. 4. If
the heating coil of the AHU is deactivated, the cooling power of the HVAC system
is given byQc = ṁcp(Ts−Tr), where Tr is the room temperature, ṁ is the mass air
flow rate, cp is the specific heat capacity of air, and Ts is the SAT. Let us denote by:
Tm the temperature of the building’s lumped thermal mass; Cr and Cm the thermal
capacitances of the room and the thermal mass; Ta the ambient temperature; Rra
and Rrm the thermal resistances between the room and the ambient, and between
the room and the thermal mass, respectively; G the solar irradiance; γ the solar
irradiance absorption factor; and Ig the internal heat gain. With this notation, the
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Tr Tm

Cr Cm

RrmRraTa

G, Ig Qc

Figure 4: The resistance-capacitance network of the building thermal model.

continuous-time state-space model can be written as

[
Ṫr

Ṫm

]
=

Ac︷ ︸︸ ︷[
−
(

1
CrRra

+ 1
CrRrm

)
1

CrRrm
1

CmRrm
− 1

CmRrm

]
·
[
Tr
Tm

]
+

Bc
u︷ ︸︸ ︷[

cpTs
Cr

0

]
ṁ+

Bc
xu︷ ︸︸ ︷[

− cp
Cr

0

0 0

]
·
[
Tr
Tm

]
ṁ+

Bc
v︷ ︸︸ ︷[ 1

CrRra

γ
Cr

1
Cr

0 0 0

]
·

Ta
G
Ig

 . (1)

The model is bilinear between the control input ṁ and the state Tr. Note that there
is no bilinearity between ṁ and Ts because Ts is fixed in our experiment.

With a first-order Euler discretization, the discrete-time model maintains the
structure of the continuous-time matrices [33]

[
Tr,k+1

Tm,k+1

]
=

A︷ ︸︸ ︷[
a11 a12
a21 a22

]
·
[
Tr,k
Tm,k

]
+

Bu︷ ︸︸ ︷[
bTs
0

]
ṁk+

Bxu︷ ︸︸ ︷[
−b 0
0 0

]
·
[
Tr,k
Tm,k

]
ṁk +

Bv︷ ︸︸ ︷[
d11 d12 d13
0 0 0

]
·

Ta,k
Gk
Ig,k

 , (2)

where the state, input and disturbance vectors are defined as

xk = [Tr,k Tm,k]
>, uk = ṁk, vk = [Ta,k Gk Ig,k]

> . (3)

We developed the following regression problem to identify the entries of ma-
trices A, Bu, Bxu, and Bv using measurements of Tr,k, ṁk, Ta,k, Gk, and Ig,k
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Figure 5: Identification and comparison of four building thermal models.

min
A,Bu,Bxu,Bv ,x̂k

∑
k

[x̂k(1)− xk(1)]2 (4a)

s.t. x̂k+1 = Axk +Buuk +Bxuxkuk +Bvvk, ∀k (4b)

a12, a21, b, d11, d12, d13 ≥ 0 (4c)

T̂min
m,k ≤ x̂k(2) ≤ T̂max

m,k , ∀k (4d)

|eig(A)| ≤ 1, |eig
(
A+Bxuuk

)
| ≤ 1, ∀k , (4e)

where xk(1) = Tr,k and xk(2) = Tm,k. Since the state Tm,k is not directly mea-
sured, the regression (4) is a non-linear optimization problem that involves multi-
plications of the optimization variables (the model parameters).

Constraints (4c) represent the fact that the positive elements of the continuous-
time matrices Ac, Bc

u, and Bc
v in (1) remain positive in the the discrete-time ma-

trices A, Bu, and Bv due to the first-order discretization. Indeed, the discrete-time
matrices are computed with A = I + ∆t · Ac, Bu = ∆t · Bc

u, and Bv = ∆t · Bc
v,

where ∆t = 15 minutes is the discretization step and I is the identity matrix.
Constraints (4d) are lower and upper bounds on the estimated unmeasured state
x̂k(2) = T̂m,k (the bounds T̂min

m,k = 0.01 · Tr,k and T̂max
m,k = 2.5 · Tr,k were used).

Constraints (4e) impose stability of the identified bilinear model to avoid over-
fitting if the data set is small or if it does not have sufficient excitation in terms of
control inputs.

Table 1: Comparison of building models with respect to RMSE
1 state, 1 step 1 state, 1 day 2 states, 1 step 2 states, 1 day

RMSE 0.92◦C 0.67◦C 0.89◦C 0.42◦C

The optimization problem (4) identifies a model based on “1-step ahead pre-
diction” meaning that the estimate x̂k+1(1) = T̂r,k+1 at time step k + 1 depends
directly on the measurement xk(1) = Tr,k at time step k. This model identifica-
tion approach is standard for MPC applications because the one-step prediction is
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Table 2: Parameters of the older model (2 states, 1 day prediction)
a11 = 0.8665 a12 = 0.0918 a21 = 0.0374 a22 = 0.9703

b = 0.2996 d11 = 0.0230 d12 = 2.016 · 10−4 d13 = 1.424 · 10−4

Table 3: Parameters of the new model (2 states, 1 day prediction)
a11 = 0.6344 a12 = 0.2661 a21 = 0.1021 a22 = 0.9170

b = 0.4716 d11 = 0.0405 d12 = 0.0028 d13 = 3.3686 · 10−4

Table 4: Fan model parameters
α3 = 2588.2 α2 = −1458.0 α1 = 630.9 α0 = 28.7

β3 = 0.0032 β2 = −0.0151 β1 = 1.4521 β0 = 55.7634

- - γ1 = 0.0133 γ0 = 0.0606

important. Nevertheless, in this experiment the building model is also used in the
reserve scheduler, and thus high-quality day-ahead predictions are also important.

For this purpose, we propose to modify the regression problem by substituting
the measurement xk(1) = Tr,k with the optimization variable x̂k(1) = T̂r,k in
(4b). We use this more complex formulation to obtain a “1-day ahead prediction”
model, which is expected to predict the building states up to one day ahead more
accurately, because it is more flexible than the original formulation. Of course, it is
also possible to identify a 1st-order model by neglecting the lumped thermal mass
of the room, which simplifies the regression problem significantly.

Two sets of building model parameters were fitted to investigate the importance
of periodic calibration. The first set (“older model”) used data from 17 − 25 June
and 4−5 July 2015, whereas the second set (“new model”) used data from 12−18
November 2015. The building was excited with different combinations of air flow
rate, SAT, and internal heat gains. Four different model variants were compared:
(i) 1-state model with 1-step ahead prediction, (ii) 1-state model with 1-day ahead
prediction, (iii) 2-state model with 1-step ahead prediction, and (iv) 2-state model
with 1-day ahead prediction.

The identification results are shown in Fig. 5 and the model Root Mean Squared
Errors (RMSEs) are given in Table 1. As expected, increasing the number of states
or the prediction horizon reduces the RMSE. We use the 2-state model with 1-day
ahead prediction in the frequency regulation experiments because it achieves the
lowest RMSE. The identified model parameters are shown in Tables 2 and 3.

3.2 Fan Model

A steady-state fan model is required in the MPC to map the air flow setpoint to
fan power, and in the frequency regulation controller to convert the electric power
setpoint to a fan speed reference. According to the fan laws, the mass air flow rate
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Figure 6: Raw fan measurements and the identified fan models.

u is proportional to the fan speed Nf, and the fan power Pf increases with the cube
of the fan speed. Therefore, a steady-state model can be obtained by fitting the
parameters of

Pf = f(u) = α3u
3 + α2u

2 + α1u+ α0 (5)

Pf = g(Nf) = β3N
3
f + β2N

2
f + β1Nf + β0 (6)

u = h(Nf) = γ1Nf + γ0 . (7)

For this purpose, we vary the fan speed setpoint from the minimum value of
10% to the maximum value of 90% of the rated fan power (with a step of 5%) and
record the air flow rate and electric power. Each setpoint is kept for 6 minutes, but
the first 20 seconds of the data after each step change are discarded to account for
communication delays and the fan transients. The identified parameters are given
in Table 4, whereas the measurements and identified models are shown in Fig. 6.
The fitting performance is very high: the RMSE is only 5 W for the speed-to-power
model and 21 W for the flow-to-power model.

4 Level 1: Reserve Scheduler

4.1 Robust Reserve Scheduling Formulation

LetRu,k andRd,k denote the electric reserve capacities at time step k for regulation
up and down, respectively. 1 It is convenient to define also the thermal up- and
down-reserve capacities ru,k and rd,k as the maximum changes in the mass air flow
rate due to reserve provision. In cooling operation, a request for regulation up
results in a reduction in air mass flow rate, such that Ru,k is related to rd,k. On
the other hand, regulation down results in an increase in air mass flow rate (Rd,k is
related to ru,k). Ru,k and Rd,k are coupled to rd,k and ru,k with the flow-to-power
fan model (5) according to

Ru,k = f(uk)− f(uk − rd,k) (8)

Rd,k = f(uk + ru,k)− f(uk) , (9)

1Up-reserve is an increase of generation or decrease of consumption, whereas down-reserve is a
decrease of generation or increase of consumption.

11



0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

Flow (cfm)

P
ow

er
 (

W
)

 

 

R
u,k

R
d,k

Nonlinear
fan curve

Linearization

r
u,k

r
d,k

u
k

u
k
 − w

lim
 r

d,k
f −1(P

k
 − w

lim
 R

u,k
)

f(u
k
)

P
k
 − w

lim
 R

u,k

P
min

Figure 7: The fan curve linearization for the optimization. The thermal reserves
and the electric reserves are shown around an air flow rate operating point.

where uk is the operating point of air flow. This nonlinear relationship is graphi-
cally shown in Fig 7.

The objective is to minimize the total cost defined as the sum of energy con-
sumption cost and reserve profit

ckPk + λk (Rd,k +Ru,k) , (10)

where ck is the electricity price and Pk is the fan power consumption. Assuming
the same payment λk for up- and down-reserves and using (8) and (9), the reserve
profit is given by

λk (Rd,k +Ru,k) = λk
[
f(uk + ru,k)− f(uk − rd,k)

]
. (11)

Typically, the TSO requests the reserve energy as a fraction of the reserve ca-
pacity using a normalized frequency regulation signal wk ∈ [−1, 1] [34]. Thus, the
reserve at time step k is

Rk =

{
wkRu,k, if wk < 0

wkRd,k, if wk ≥ 0 .
(12)

The electric reserve request can be translated to a perturbation around uk using the
fan curve

∆uk = f−1 (Pk +Rk)− uk . (13)

With the above notation, the multi-period robust reserve scheduling problem
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can be written as

min
uk,ru,k,rd,k

∑N1−1

k=0
ckf(uk)− λk (Rd,k +Ru,k) (14a)

s.t. xk+1 = Axk +BuTs · (uk + ∆uk)+

Bxuxk · (uk + ∆uk) +Bvvk, ∀k (14b)

umin,1 ≤ uk + ∆uk ≤ umax,1, ∀wk ∈ [−1, 1], ∀k (14c)

xmin,k ≤ xk ≤ xmax,k, ∀wk ∈ [−wlim, wlim], ∀k . (14d)

Equation (14b) represents the building dynamics, whereas (14c) and (14d) set up-
per and lower bounds on the air mass flow rate and temperature, respectively. The
limits umin,1 and umax,1 are calculated at the fan speeds 20% and 80% with

umin,1 = h (20%) , umax,1 = h (80%) . (15)

The comfort zone (temperature) limits xmin,k and xmax,k are time-varying and dif-
ferent for working and non-working hours.

Uncertainty in the unknown frequency regulation signal, wk, is explicitly han-
dled in the reserve scheduling problem. Formulation (14) builds robustness to
wk with the robust input and state constraints (14c) and (14d). Since the worst
case in terms of power is either full up-reserve or down-reserve activation, wk
can take any value in [−1, 1] in (14c). The energy content of the regulation sig-
nal over 15 minutes is typically limited, which is captured by the uncertainty set
wk ∈ [−wlim, wlim] in (14d), where 0 < wlim ≤ 1 is the energy limit.

4.2 Reformulation and Approximation

Due to the uncertain variable wk, problem (14) is not directly solvable. However,
we derive the robust counterpart problem (16) by formulating the input and state
constraints of (14) only for the boundaries of the uncertainty wk. In (16), xk and
xk are the worst case higher and lower state trajectories, respectively. We show in
Proposition 1 that problems (16) and (14) are equivalent, if the building operates
in cooling mode.

min
uk,ru,k,rd,k

∑N1−1

k=0
ckf(uk)− λk (Rd,k +Ru,k) (16a)

s.t. xk+1 = Axk +BuTs · f−1 (Pk − wlimRu,k) +

Bxuxk · f−1 (Pk − wlimRu,k) +Bvvk, ∀k (16b)

xk+1 = Axk +BuTs · f−1 (Pk + wlimRd,k) +

Bxuxk · f−1 (Pk + wlimRd,k) +Bvvk, ∀k (16c)

umin,1 ≤ uk − rd,k, uk + ru,k ≤ umax,1,∀k (16d)

xmin,k ≤ xk, xk ≤ xmax,k ∀k . (16e)
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Lemma 1. Function f(u) is both monotonic and convex.

Proof. It is sufficient to show that the 1st and 2nd order derivatives of f are non-
negative for the parameters of Table 4. �

Lemma 2. If wk ∈ [−wlim, wlim] with 0 < wlim ≤ 1, the following statements are
true:

min
wk

(uk + ∆uk) = f−1 (Pk − wlimRu,k) for wlim ≤ 1 (17)

max
wk

(uk + ∆uk) = f−1 (Pk + wlimRd,k) for wlim ≤ 1 (18)

min
wk

(uk + ∆uk) = uk − rd,k, for wlim = 1 (19)

max
wk

(uk + ∆uk) = uk + ru,k, for wlim = 1 . (20)

Proof. The proof is given in Appendix A. �

Assumption 1. We assume that the building operates in cooling mode by deacti-
vating the heating coil of the AHU, and the SAT is controlled to a setpoint Ts that
satisfies

Ts ≤ xmin,k ≤ Tr,k, ∀k . (21)

Therefore, increasing the air flow rate will always decrease the room temperature.

Proposition 1. Under Assumption 1, optimization problems (14) and (16) are
equivalent.

Proof. The proof is given in Appendix B. �

The dynamics in (16) involve the inverse of a polynomial combination of op-
timization variables and are complex. This is in contrast to the formulations of
[19–21] where the nonlinear fan dynamics were not considered. We propose to ap-
proximate (16) by the simple linearization of the inverse function shown in Fig. 7,
which leads to problem (22). As shown by Propositions 2 and 3, problems (16)
and (22) are equivalent only for the special case wlim = 1, but not in general
(0 < wlim ≤ 1).

min
uk,ru,k,rd,k

∑N1−1

k=0
ckf(uk)− λk (Rd,k +Ru,k) (22a)

s.t. xk+1 = Axk +BuTs · (uk − wlim · rd,k)+

Bxuxk · (uk − wlim · rd,k) +Bvvk, ∀k (22b)

xk+1 = Axk +BuTs · (uk + wlim · ru,k)+

Bxuxk · (uk + wlim · ru,k) +Bvvk, ∀k (22c)

(16d), (16e) .
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Proposition 2. Let x?k and x?k denote the maximum and minimum state trajectories
of the original problem (16). Furthermore, let x∗k and x∗k denote the maximum and
minimum state trajectories obtained by (22). With 0 < wlim ≤ 1, x∗k ≥ x?k and
x∗k ≥ x?k hold for any time step k, i.e., the approximation (22) overestimates the
maximum and minimum room temperatures compared with the original problem
(16).

Proof. The proof is given in Appendix C. �

Proposition 3. Problems (16), (22) are equivalent if wlim = 1.

Proof. The proof follows directly by rewriting (16b) and (16c) using (19), (20) and
(32) from Lemma 2. �

Note that the overestimation of the maximum and minimum room temperature
builds additional robustness to temperature excursions above xmax,k, but it reduces
robustness to temperature excursions below xmin,k. This is desirable because the
state trajectory will generally remain closer to xmax,k than xmin,k due to minimiza-
tion of energy consumption cost in (22a).

Problem (22) is a deterministic nonlinear optimization problem with cubic ob-
jective function, bilinear equality constraints and linear inequality constraints. Al-
though this is a non-convex problem, it is possible to solve it in due time with
the solver IPOPT due to its relatively small size (the problem was compiled with
YALMIP [35]). The outcome of (22) is the up-reserve Ru,k and down-reserve Rd,k
capacity for each time slot of the scheduling horizon k ∈ [0, N1 − 1].

4.3 Energy Limit of Regulation Signal

The energy limit wlim of the regulation signal is the worst case normalized reserve
request. To identify this limit, we analyze 2-month historical data of the RegD sig-
nal from the Pennsylvania, Jersey, and Maryland Power Market (PJM) (December
2012 to January 2013). Fig. 8 shows the cumulative distribution of the signal’s en-
ergy content over 15 minute intervals, as well as the actual worst case, the median,
95%, 97.5%, and 99% percentiles. Since the actual worst case of wlim = 0.88
would lead to very conservative solutions, we define the worst case as the 97.5%
percentile of the distribution (wlim = 0.25). Therefore, the requested reserve en-
ergy by RegD over 15 minutes will be less than 25% of the reserve capacity with
probability 97.5%.

The worst case reserve request along the prediction horizon is obtained in (14d)
by taking the worst case for each time step independently [19]. Although this is
a conservative approach, it has the advantage of building additional robustness to
modeling and forecast uncertainties.
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Figure 8: Cumulative distribution of RegD signal’s energy content in 15 minutes.

4.4 Modeling Reserve Product Constraints

Problem (22) allows us to select different reserve capacities for each 15-min time
slot, as well as different Ru,k and Rd,k for the same time slot. However, many
markets have requirements on the structure of the reserve product, in particular
reserve blocks with minimum duration and/or symmetric reserves.

Reserve blocks with minimum duration of Tres ∈ N time steps can be modeled
by adding in (22) the constraints Ru,k = Ru,k+j and Rd,k = Rd,k+j ∀k = nTres +
1, ∀j ∈ {1, . . . Tres}, where n ∈ N and n ≤ (N1 − 1)/Tres. We select Tres = 4 to
require the reserve capacities to be constant over periods of 1 hour.

Symmetric reserve capacities can be enforced by introducing in (22) the con-
straint Ru,k = Rd,k ∀k, and are expected to reduce the amount of reserves due
to the nonlinear flow-to-power fan model. In addition, symmetric reserves and/or
reserve blocks with minimum duration increase the complexity because they are
nonlinear equality constraints on ru,k and rd,k.

Even if symmetric electric reserve capacities are not required from the re-
sources, we chose to impose symmetry in the thermal domain to limit the impact of
offering reserves on the room temperature. If the thermal reserves are symmetric,
the electric reserves will be asymmetric due to the nonlinear fan curve and (8), (9).
In this case, a single variable rk can replace ru,k and rd,k, which is expected to re-
duce the computation time. We term this type of reserve offering as “asymmetric”
operation.

16



5 Level 2: Room Climate Controller

5.1 MPC Formulation

The level 2 controller determines the air mass flow rate setpoint uk with the robust
MPC formulation

min
uk,ru,k,rd,k

∑N2−1

k=0
ckf(uk) (23a)

umin,2 ≤ uk − rd,k, uk + ru,k ≤ umax,2, ∀k (23b)

R∗u,k = f(uk)− f(uk − rd,k), ∀k (23c)

R∗d,k = f(uk + ru,k)− f(uk), ∀k (23d)

(16e), (22b), (22c) .

Problem (23) is similar to (22) with the main differences being (i) the electric
reserve capacities R∗u,k and R∗d,k are fixed from level 1, and (ii) the only objective
is to minimize energy cost.

The MPC selects uk, ru,k and rd,k such that the electric reserves R∗u,k and R∗d,k
can be provided according to constraints (23c) and (23d). Weather forecasts are
used in (23) and are updated at every time step. The comfort constraints of (22)
and (23) are modeled as soft constraints with high penalties to avoid infeasibility
due to plant-model mismatch or forecast errors.

The upper and lower bounds on the air flow rate umin,2 and umax,2 of the MPC
are less tight than those of the reserve scheduler to facilitate meeting the comfort
zone constraints

umin,2 = h (10%) , umax,2 = h (90%) . (24)

The selected bounds correspond to the minimum acceptable fan speed values sug-
gested by the building manager of FLEXLAB.

5.2 Kalman Filter

Since Tm,k is not measured directly and the measurement of Tr,k is noisy, we use
an extended Kalman filter to obtain a state estimate x̂k for the MPC and the reserve
scheduler.

Assuming additive process and measurement noise, the a priori error covari-
ance P−e,k, a posteriori error covariance Pe,k and Kalman gain Kk are given by [36]

P−e,k = FkPe,kF
>
k +Q (25)

Kk = P−e,kH
>
k (HkP

−
e,kH

>
k +R)−1 (26)

Pe,k = (I −KkHk)P
−
e,k , (27)

where Fk is the Jacobian matrix of system dynamics andHk is the Jacobian matrix
of the output yk = Cxk; Q = [0.4 0; 0.4 0] and R = 0.1 are the process and
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measurement noise covariance matrices, respectively;2 and I is the identity matrix.
Let φx denote the partial derivative of bilinear dynamics and ϕx denote the partial
derivative of the output equation, both with respect to the state xk. The matrices
Fk and Hk are calculated with

Fk = φx(x̂k−1, uk−1) = A+Bxux̂k−1uk−1 (28)

Hk = ϕx(x̂k−1, uk−1) = C . (29)

6 Level 3: Frequency Regulation Controller

Level 3 controls the fan speed (input of the fan controller) such that the fan power
tracks the frequency regulation signal. Our approach is different from [26] that
used the frequency of the VFD as a control variable, and from [24] where a fan
speed command was superimposed on the output of the fan controller.

There are four requirements for the frequency regulation controller: fast re-
sponse, minimal computation effort, accuracy and stability. For this purpose, we
developed a novel switched controller with two loops: (i) Ctrl1: a model-based,
feedforward controller, and (ii) Ctrl2: a model-free, feedback PI controller. The
feedforward controller uses the static speed-to-power fan model (6) and it is inher-
ently stable due to the absence of feedback. The PI controller is used to reduce
the steady-state error of the feedforward controller, but its stability is not guaran-
teed and requires gain tuning. The discrete-time implementation of the switched
controller is described by Algorithm 1.

Step 3 of Algorithm 1 uses the flow-to-power fan model (5) to translate the
scheduled flow rate of level 2 to baseline power consumption. The desired fan
power Pd is computed at step 5 based on the baseline, the reserve capacity of level
1 and the regulation signal. The new control error enew is calculated at step 8 as
the difference between Pd and the measured fan power Pf. At step 9 the condition
|enew| ≤ ε is checked to decide whether Ctrl1 or Ctrl2 will be used (ε is a tolerance
that represents the fan model’s accuracy). If |enew| ≤ ε holds, then we activate
Ctrl2 (the PI controller’s discrete time implementation is given from step 10 to step
13). On the other hand, if |enew| > ε, we activate Ctrl1 and determine the fan speed
at step 15 according to (6).

After a large power setpoint change, Ctrl1 remains active for as long as |enew| is
larger than ε, whereas the controller switches to Ctrl2 when |enew| ≤ ε. When we
switch from Ctrl1 to Ctrl2, we reset the integral error to zero (step 16 of Algorithm
1) to avoid large overshoots due to accumulated errors. Furthermore, if the output
of Ctrl2 is larger than 90% or smaller than 10%, we cap or floor the fan speed to
these values.

2We set R = 0.1 based on the accuracy of the temperature sensors. Based on the building
model’s RMSE (equal to 0.42◦C from Table 1), an initial estimate of the diagonal entries of Q is
0.422 = 0.1764. We chose the larger value 0.4 because the model’s out-of-sample RMSE will be
higher than 0.42.

18



Algorithm 1 Implementation of the switched controller
1: initialize old tracking error eold = 0 and fan speed Nf
2: while experiment is running do
3: calculate baseline power: Ps = f(ṁs)
4: compute reserve: R=wRd (if w>0), R=wRu (if w≤0)
5: calculate desired fan power: Pd = Ps +R
6: repeat
7: measure fan power Pf
8: calculate new tracking error: enew = Pd − Pf
9: if |enew| ≤ ε then

10: set PI output: Nf,pi =Nf +Kp(enew−eold)+Ki∆tenew
11: cap fan speed: Nf = min[max(Nf,pi, Nf,min), Nf,max]
12: set fan speed to Nf
13: set old tracking error to: eold = enew
14: else
15: set fan speed to: Nf = g(Pd)
16: set old tracking error to: eold = 0
17: end if
18: until elapsed time is equal to control loop duration
19: end while

Table 5: Tuned gains of the PI controller
Region (kW) [0, 0.5) [0.5, 1) [1, 1.5) [1.5, 2) [2, 2.5)

Kp (proportional) 0.004 0.004 0.004 0.0045 0.004
Ki (integral) 0.01 0.0035 0.003 0.0025 0.002

Due to the nonlinear fan curve, gain scheduling was used in the PI controller.
Five operating regions were defined and different proportional (Kp) and integral
gains (Ki) were calculated for each region using the Ziegler-Nichols method [37].
We performed step response tests with Ki = 0 and gradually increased Kp until
a critical value with stable and consistent oscillations in fan power. The critical
proportional gain and the period of oscillations are used to determine Kp and Ki.

The gains obtained with the Ziegler-Nichols method served as an initial guess,
whereas the final gains were determined with trial and error and are presented in
Table 5. The Kp gains are lower and the Ki gains are higher than those suggested
by the Ziegler-Nichols method because the goal of the PI controller (Ctrl2) is to
correct the steady-state error of Ctrl1, but not to recover the system after a large
setpoint change.

The proposed switched controller is advantageous in terms of stability and per-
formance compared with the open-loop controller of [26] and the closed-loop con-
troller of [24]. Ctrl1 allows us to track sudden power setpoint changes without the
need of high gains in Ctrl2 that would compromise stability.
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7 Conclusion and Outlook

In Part I of this two-part paper, we presented the commercial building test facility
FLEXLAB for a frequency regulation demonstration project. We developed and
compared different building models for use in a day-ahead reserve scheduler and
an MPC for building climate control. Specifically, we presented mathematical re-
formulations to include the nonlinear fan dynamics in the optimization problems.
Furthermore, we proposed a switched controller for frequency regulation that is
accurate and inherently stable. In Part II we report extensive experimental results
using the developed models and controllers.

A Proof of Lemma 2

Proof. From the definition of ∆uk in (13) and (12) we get

min
wk

(uk + ∆uk) = min
wk∈[−wlim,0)

[
f−1 (Pk + wkRu,k)

]
. (30)

Due to monotonicity, argmin[f−1(Pk + wkRu,k)] is equal to

argmin(Pk + wkRu,k) = −wlim. (31)

Substituting the minimizer −wlim in (30) we get (17). Equation (19) is a special
case of (17) derived as

f−1 (Pk − wlimRu,k) = f−1 [f(uk)−Ru,k] =

f−1 [f(uk)− f(uk) + f(uk − rd,k)] = uk − rd,k , (32)

where (8) is used. The maximization case for (18) and (20) can be proved analo-
gously but the proof is omitted for brevity. �

B Proof of Proposition 1

Proof. It is sufficient to show that the input constraints (16d) are equivalent to
(14c), and that the set of state constraints (16b), (16c) and (16e) is equivalent to
the set of constraints (14b) and (14d). The equivalence of input constraints follows
directly from (19) and (20). For the state constraints we first write (14b) as

xk+1 =Axk+(BuTs +Bxuxk) ·(uk+∆uk)+Bvvk. (33)

Constraint (14d) is applied only to the first state Tr,k = Cxk of the state vector
xk, where C = [1 0] is the output matrix. Observing that CBuTs = bTs and
CBxuxk = −bTr,k, constraint (14d) can be written as

min
wk

[CAxk+b(Ts−Tr,k)·(uk+∆uk)+CBvvk]≥xmin,k (34)

max
wk

[CAxk+b(Ts−Tr,k)·(uk+∆uk)+CBvvk]≤xmax,k. (35)
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Due to assumption 1, we have b(Ts − Tr,k) ≤ 0 and so the left hand side of (34) is
minimized when uk + ∆uk is maximized. From (18), this is achieved when uk +
∆uk = f−1 (Pk + wlimRd,k) holds. Let xk denote the minimum state trajectory at
time step k. The time evolution of xk is therefore obtained by xk+1 = CAxk +
b(Ts − Cxk) · f−1 (Pk + wlimRd,k) + CBvvk, which is essentially (16c). Thus, if
xmin,k ≤ xk holds, then the left hand side of (14d) also holds because xk ≤ xk ∀wk.

Analogous arguments can be used to show that (35) results in (16b) and xk ≤
xmax,k, which are equivalent to the right hand side of (14d), but this is omitted for
brevity. �

C Proof of Proposition 2

Proof. Using definition (8) and the convexity of f we get

Pk − wlimRu,k = f(uk)− wlim [f(uk)− f(uk − rd,k)]

= (1− wlim)f(uk) + wlimf(uk − rd,k)

≥ f [(1− wlim)uk + wlim(uk − rd,k)] . (36)

Using the monotonicity of f in (36) we get

f−1 (Pk − wlimRu,k) ≥ (1− wlim)uk + wlim(uk − rd,k)

= uk − wlimrd,k . (37)

x∗k ≥ x?k is now obtained by combining (37), (16b), (22b), and using the same
arguments related to b(Ts − Tr,k) ≤ 0 as in the proof of Proposition 1. Similarly,
one can show that uk+wlimru,k ≤ f−1 (Pk + wlimRd,k) holds and so that x∗k ≥ x?k
also holds. Fig. 7 provides a graphical interpretation of (37). �
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